
Indigo: Synthetic Assets on Cardano

Indigo Labs
info@indigo-labs.io

November 2021, Draft v0.3

Abstract

We are in the midst of a global switch of the essential financial train
tracks that we use as a global society to trade and transact at the retail
and wholesale level, aided by blockchain technology evolution. In this
paper, we showcase Indigo Protocol to assist in that transition for the
people. For a majority of the world’s billions of people, fair access to
the financial tools of this world is all but inaccessible. Accessible for the
accredited and wealthy, but not the person in a developing country or
without particular credit.

With Indigo Protocol, our mission is to bring the world’s financial and
equitable assets to the blockchain allowing everyone accesses to them, in
a synthetic form, to control their financial destiny. As excellent wealth
distribution takes place with money flowing out of the western and de-
veloped world and into other countries, Indigo Protocol will be just one
tool in decentralized blockchain that will help this long overdue, more
accessible, and fair distribution happen seamlessly.

Summary

1 Introduction 3
1.1 User Story . 4
1.2 Synthetic Assets . 4
1.3 Market & Users . 4
1.4 How It Works . 5

1.4.1 Going Short . 6
1.4.2 Going Long . 6
1.4.3 Stability Pool Redemption 6

1.5 Protocol Overview . 6
1.5.1 Minting & Stability Functionality 6
1.5.2 Providing Liquidity to DEXs 7
1.5.3 Staking INDY . 7

1.6 Tokenomics . 7
1.6.1 INDY Token Distribution 8

1.7 INDY Token Staking . 9

1

1.8 iAsset Tokenomics . 9
1.8.1 Minting Policy . 9

1.9 Governance . 9
1.9.1 Protocol Parameters . 10

1.10 Risk Management . 10

2 Protocol Specifications 11
2.1 CDP . 11

2.1.1 User Requirements . 11
2.1.2 Protocol Requirements . 12

2.2 Stability Pool . 13
2.2.1 User Requirements . 13
2.2.2 Protocol Requirements . 13

2.3 Staking . 13
2.3.1 User Requirements . 13
2.3.2 Protocol Requirements . 13

2.4 Governance . 13
2.4.1 User Requirements . 13
2.4.2 Protocol Requirements . 14

2.5 Vesting . 14
2.6 Liquidity Pool . 15

2.6.1 User Requirements . 15
2.6.2 Protocol Requirements . 15

3 Smart Contract Design 16
3.1 Vesting . 16

3.1.1 Native Tokens . 16
3.1.2 OnChain . 16

3.2 Staking . 18
3.2.1 Native Tokens . 18
3.2.2 OnChain . 18

3.3 Governance . 21
3.3.1 Native Tokens . 21
3.3.2 OnChain . 21

3.4 Oracle . 28
3.4.1 Native Tokens . 28
3.4.2 OnChain . 28

3.5 Stability Pool . 29
3.5.1 Native Tokens . 29
3.5.2 OnChain . 30

3.6 Collateralized Debt Position (CDP) 32
3.6.1 Native Tokens . 32
3.6.2 OnChain . 32

3.7 Liquidity Pool . 35
3.7.1 Native Tokens . 35
3.7.2 OnChain . 35

2

4 OffChain Endpoints 39
4.1 Vesting . 39

4.1.1 Withdraw . 39
4.2 Staking . 39

4.2.1 Create Stake Position . 39
4.2.2 Stake . 40
4.2.3 Withdraw from Stake Position 40
4.2.4 Unstake . 40
4.2.5 Unlock . 41

4.3 Governance . 41
4.3.1 Create Proposal . 41
4.3.2 Vote . 41
4.3.3 End Proposal . 42
4.3.4 Execute . 43

4.4 Oracle . 44
4.4.1 Feed Price . 44

4.5 CDP . 45
4.5.1 Open CDP . 45
4.5.2 Update CDP (deposit, withdraw, mint, burn, close, liqui-

date) . 45
4.6 Stability Pool . 47

4.6.1 Deposit . 47
4.6.2 Withdraw . 48
4.6.3 Withdraw Reward . 48

4.7 Liquidity Pool . 48
4.7.1 Open a Liquidity Position 48
4.7.2 Adjust a Liquidity Position 49

5 Glossary 50

6 Experiments 50

7 Related Work 50

8 Conclusions 50

1 Introduction

This paper presents the Indigo Protocol. Apart from the eUTXO[1]-driven
contract designs, other texts like user stories, key concepts, and protocol spec-
ifications are platform-agnostic. Compared to the introductory White Paper,
this writing can be considered a Yellow Paper and can be used as a high-level
protocol specification.

While Indigo Labs is building the protocol on Cardano, the contract designs
should adapt to any UTXO blockchains that support scripting and custom user
tokens. Moreover, the separation between protocol specifications and contract

3

designs allows us to innovate ideas on the specifications quickly. We have it-
eratively designed the protocol. This way, each iteration is well-scoped for the
specific additions and optimization that it introduces.

This draft is our attempt to complete the first working protocol. Further
innovations will be incorporated in the upcoming versions. Further optimization
will be introduced with the growth of the underlying platform.

1.1 User Story

Meet Blue, an avid investor who has recently become interested in synthetic
assets. Blue believes that decentralization and the blockchain are potent tools.
Blue has learned about the Indigo Protocol and wants to use it instead of the
highly centralized, expensive brokerage and exchange accounts.

Violet is a retail day trader located in Nigeria, and she regularly invests in
West African, US, Chinese, and other global markets. She is living outside of
the countries where the markets trade has a unique set of challenges.

Both Blue and Violet have cost-saving and accessibility incentives to use the
Indigo Protocol. Blue is incentivized by the low cost to mint synthetic assets
and the availability of decentralized exchange platforms they may use to trade
or supply their tokens as liquidity providers to earn trading fees from other
users. Violet is incentivized to trade synthetic assets, called iAssets, built on
Indigo since she can trade all of her assets on a single platform around the clock.

1.2 Synthetic Assets

Synthetic assets are cryptocurrency derivatives that resemble traditional deriva-
tives (tracking the price of an underlying asset) but are far more composable,
accessible, and verifiable as transactions process on a public blockchain. So, for
example, we can lock up some collateral to create a synthetic asset called iBTC
that has the same value as Bitcoin on the Blockchain without having any real
Bitcoin in the first place. This service gives users exposure to various assets
without the need to own the underlying asset. These assets can be anything
that has value in the real world. With its transparency, efficiency, low barriers
to entry, and decentralized traits, the blockchain can smoothly deliver all these
assets to anyone with access to the Internet.

Synthetic assets are highly composable in a broader DeFi ecosystem, helping
create and maintain massive markets and dApps that rely on them. For exam-
ple, synthetic assets of fiat like iJPY can be used in ”fiat” lending protocols.

1.3 Market & Users

Synthetic assets can create massive markets thanks to the following properties:

• They can track many different types of assets, basically anything with
a real-life value. Hence being able to create many markets for all these
assets.

4

• There are no backed assets or custodians involved to introduce inefficien-
cies to processes.

• There is a low barrier to entry. Anyone with cryptocurrency can lock
some up to mint new synthetic assets or buy and trade them on the open
market.

• They are highly composable in a wider DeFi ecosystem.

Like most DeFi protocols, Indigo needs cash flows to incentivize different
actors in the platform. These can be trade fees from DEXs where Indigo users
can provide liquidity with their diverse token types. Indigo users can mint new
synthetic assets to create new markets on different AMMs and provide liquidity
to them for yield farming.

Users can also use synthetic assets directly on other protocols. For example,
iBTC can be used as either collateral or loan money on lending applications. In
addition, users can use iETH and other synthetics on specific platforms.

Indigo generally brings many new assets to the whole DeFi ecosystem and
more low-barrier-to-entry services to its users.

1.4 How It Works

Anyone can lock up some crypto collateral on the blockchain to mint new syn-
thetic assets that can be held or traded like any other native token. Autonomous
Oracles update the real-world price of these assets to the smart contracts that
use them. This process sets a market price for trading and calculates the col-
lateral ratio to guarantee that minted synthetic assets are over-collateralized at
all times.

The collateral ratio cr at any given time is the ratio of the collateral value
over the minted amount value.

cr =
pc ∗ ac
pm ∗ am

When cr drops below the minimum threshold, the collateral is liquidated to
ensure solvency.

We are designing an extended version of the Stability Pools that Liquity has
introduced. This new design still allows a low collateral ratio, more automatic
and guaranteed liquidation events, but extra efficiency thanks to Cardano’s low
transaction cost. We also have to adapt to our protocol’s many more token
types, but the underlying idea is still there. Users can provide stability by de-
positing iAsset tokens, which will be used to pay the debt of under-collateralized
CDPs in exchange for a share of the claimed collaterals and INDY.

With the minted assets, users can trade to go short, deposit into liquidity
pools for yield farming and stay long, or deposit into the stability pool to gain
a net profit on liquidation events of other debt positions.

All procedures are transparent, decentralized, and tracked by smart con-
tracts. No one is powerful enough to modify the protocol at will. Like enabling

5

a new asset to mint, all changes must go through democratic on-chain voting
processes.

1.4.1 Going Short

Blue thinks that the price of Bitcoin is overvalued and is going to drop in price.
He currently has USD Stablecoin that he collateralizes to mint some iBTC. Blue
immediately trades away his iBTC. Once the iBTC price drops, Blue trades back
the minted iBTC at a lower price, returns it to get back his collateral at a net
profit.

1.4.2 Going Long

Violet thinks that Ethereum’s price is undervalued and is going to rise in price.
She trades some USD Stablecoin tokens for iETH then deposits them into a
liquidity pool for yield farming. Once the iETH price rises enough and Violet
wants to cash out, she withdraws her iETH with yield from the liquidity pool,
trades back more USD Stablecoin for a net profit.

1.4.3 Stability Pool Redemption

Blue thinks that iBTC will rise in price and observes many under-collateralized
debt positions that minted it. He trades some USD Stablecoin for iBTC then
deposits them into the stability pool. For each liquidation event, Blue’s iBTC
is burned to offset the loan, for him to get back a lot more stablecoin than his
initial investment, thanks to both the price rise and the instant net profit on
the collateral.

1.5 Protocol Overview

The below diagrams show different functionality of the application and how they
interact with different users of the Indigo Protocol.

1.5.1 Minting & Stability Functionality

Minting and Stability Pools are key features of the Indigo Protocol. Minting
allows any user to open a Collateralized Debt Position in return for an iAsset.

6

Stability Pools are then used to peg the price of the iAsset to the real-world
value.

1.5.2 Providing Liquidity to DEXs

By providing both an iAsset and stablecoin, you can pool your token to
provide liquidity to the protocol and participate as a liquidity provider.

1.5.3 Staking INDY

The native asset of the Indigo Protocol, the INDY token, can be staked to
vote on active polls and is required as a deposit for making new governance
suggestions.

1.6 Tokenomics

INDY is the protocol’s governance token. It is mainly used for governance but
also used as a reward for stakers in the platform. The total supply of INDY
is 35M tokens with a 6 decimal precision. We believe in a fair distribution of
the INDY tokens, therefore there will be no pre-sale and private distribution to
investors prior to launch.

The INDY tokens have already been minted, all at once, to be distributed
to the community as shown below. And by a monetary policy that disallows
future minting and burning.

7

1.6.1 INDY Token Distribution

Percent-based Distribution Schedule
Genesis Y1 Y2 Y3 Y4 Total

Stability Pool 15.00% 10.00% 5.00% 5.00% 5.00% 40%
iAsset LP 0.00% 5.625% 4.50% 3.00% 1.875% 15%
INDY LP 0.00% 3.00% 3.00% 3.00% 1.00% 10%
DEX Airdrop via.
Governance Vote

0.00% 2.00% 0.00% 0.00% 0.00% 2%

Community Funds
& DAO Treasury

5.00% 0.00% 1.00% 1.00% 1.00% 8%

Team Distribution 7.00% 7.00% 6.00% 5.00% 0.00% 25%
Total 27% 27.6% 19.5% 17% 8.9% 100%

• Stability Pools: We reward INDY to stability providers, who deposit iAs-
sets in preparation for guaranteed collateral liquidation. This is critical
for both system solvency, user experience, and security against liquidity
risks.

• iAsset LP : We reward INDY to iAsset LP stakers for their commitment
to the iAssets LPs, essential to the whole ecosystem’s liquidity. Without
them, it’s not easy to do useful things with the minted iAssets.

• INDY Stakers: We reward INDY to INDY stakers, who stake to partici-
pate in the governance processes of the protocol. We need such incentive
for more people to hold INDY, which in turn balances our decentralized
system. This prevents having a few whales who run the system.

• DEX Airdrop: We need a DEX to expose the iAssets further and create
a revenue stream from yield farming for different agents in the protocol.

8

Gifting INDY to DEX users isn’t just a nice gesture to be part of a bigger
ecosystem; it drives our collaboration with the DEX. The plan is to choose
the concrete DEX after a certain amount of time (1 year after genesis)
through democratic governance voting.

• Community Funds: This is a small pool of funds that can be spent through
a governance proposal to fund future contributors and partners of the
protocol mainly.

• Team Distribution: This is the reward for the initial development team to
develop and maintain the protocol until stability is absolute.

1.7 INDY Token Staking

The INDY token can be staked to be used in the governance processes. INDY
Token holders who have staked their position can vote on polls. Voting power is
then weighted by the total amount of staked INDY each holder has. Therefore,
users with a larger amount of INDY tokens will have more influence on voting.
We have done careful tokenomics distribution to prevent whales in the ecosystem
who control it. No presale, with live rewards distributed fairly among different
protocol agents.

INDY stakers will be rewarded with more INDY. This doesn’t just empower
dedicated participants, it incentivizes people who lock it down for governance,
for the growth of the whole protocol.

1.8 iAsset Tokenomics

iAsset tokens are over-collateralized synthetic tokens that are minted and burnt
through the Mint contract. iAsset tokens give users price exposure to real assets,
as well as allowing fractional ownership of the underlying asset, with decimal
precision of 6. iAssets cannot be created without collateral, which allows the
Indigo Protocol to efficiently peg the price of the token through our state-of-
the-art liquidation model.

1.8.1 Minting Policy

iAsset tokens can only be minted and burned against a CDP through the CDP
smart contract. Therefore, their validation rules are tied to the Mint endpoints
being called.

1.9 Governance

The Indigo protocol is fully decentralized in that no one is powerful enough to
change it at will. Instead, all changes must go through a democratic governance
process. INDY holders can deposit a small sum of Proposal Deposit to open
new proposals for other INDY stakers to vote on.

Initially, INDY holders can start the following proposals:

9

• White list a new synthetic asset type to make it mintable.

• Delist an asset in the event of unstable market conditions, making it no
longer mintable.

• White list a new LPToken type to receive INDY reward by staking it.

• Update protocol parameters, like the minimal amount of INDY tokens
required to open a new proposal.

• Spend the community fund for new development, Indigo Improvement
Proposals, and Bug Bounties.

After a Voting Period, if the amount of staked INDY participants and the
ratio of yes over total votes pass both minimum requirements, the proposal
passes. However, the protocol will wait for an Effective Delay before making
the change to ensure a smooth transition. For example, upon whitelisting a new
iAsset, its oracle might need some time to stabilize.

1.9.1 Protocol Parameters

These are the protocol parameters that can be updated through governance.

Name Type Description
Minimum Col-
lateral Ratio

Per iAs-
set

Each asset might have a very different
underlying market, volatility property,
and stability pool volume hence needing
a different minimum collateral ratio.

Quorum Protocol The minimum percentage of stake re-
quired to pass a proposal.

Threshold Protocol The minimum percentage of yes votes
required to pass a proposal.

Voting Period Protocol The period (in blocks) in which stakers
can vote on a proposal.

Effective Delay Protocol The period (in blocks) the system waits
before executing a passed proposal.

Expiration Pe-
riod

Protocol The period (in blocks) that a proposal
has to be executed before being invali-
dated.

Proposal De-
posit

Protocol The number of INDY tokens need to be
deposited to open a new proposal.

1.10 Risk Management

We constantly audit the platform and market conditions to inform users with a
low collateral ratio that might get liquidated to deposit more collateral. We also
provide intuitive tools for the users to monitor and read the market themselves.

10

We also constantly attack the protocol on both the testnet and mainnet to
find vulnerabilities to patch or warn users to avoid risky scenarios if there are
any.

For malicious and under-performing risks of oracles and such, we have quick
governance solutions to switch oracles or punish bad actors in the platform.
This includes falling back to our own Indigo Labs infrastructure, given enough
staked votes from the community. We’ve designed secure incentive formulas for
agents to benefit only if they play by the rules, and lose if they don’t.

2 Protocol Specifications

2.1 CDP

2.1.1 User Requirements

• R1 : Users can open a CDP.

A user can open a collateral debt position (CDP) by locking ADA into
a smart contract and minting an iAsset (iXAU, iOIL, iXAG, etc). The
minted iAsset will be sent to the user’s wallet or any wallet the user wants.
It is not checked in the validator.

When opening a CDP, the user must associate that CDP with a kind of
iAsset in the iAssets Whitelist of the protocol. The user can only interact
with the iAsset associated with the CDP. The user opening a CDP is the
owner of that CDP.

• R2 : Users can interact with their own CDP.

A user can interact with his/her CDP in one of the following ways:

– Deposit more ADA collateral.

– Withdraw ADA collateral from the CDP. The ADA will be sent to
the user’s wallet or any wallet the user wants. It is not checked in
the validator.

– Mint iTSLA. The minted iTSLA will be sent to the user’s wallet or
any wallet the user wants. It is not checked in the validator.

– Burn iTSLA from the user’s wallet.

– Close their CDP by burning all minted iAssets and getting back all
the ADA collateral. The collateral of closed CDP will be sent to any
address the owner wants (The on-chain logic doesn’t check where this
collateral goes).

• R3 : Users can liquidate an undercollateralized CDP by burning an equiva-
lent amount of minted iAsset and transferring the collateral to the Stability
Pool.

11

A CDP is undercollateralized if its CR is below the Minimal Collateral
Ratio (refer to R6).

In a liquidation event, the Stability Providers will lose a pro-rata share of
their iAssets deposit and gain a pro-rata share of the collateral (ADA).

Let’s have an example: A CDP with 1,000 ADA and 500 iXAU is being
liquidated. This table contains the deposited balance and share of all
iXAU Stability Provider before the liquidation events.

iXAU deposit balance iXAU share
User A 1000 20%
User B 1500 30%
User C 2500 50%

This table contains the iXAU balance lost, ADA reward gained from the
liquidation event, and the final iXAU balance after the liquidation of all
iXAU Stability Provider.

iXAU lost ADA rewarded Final iXAU balance
User A 500 x 20% = 100 1,000 x 20% = 200 1000 - 100 = 900
User A 500 x 30% = 150 1,000 x 30% = 300 1500 - 150 = 1350
User A 500 x 50% = 250 1,000 x 50% = 500 2500 - 250 = 2250

2.1.2 Protocol Requirements

• R4 : A CDP can only be interacted with by its owner (R1).

• R5 : One user can open multiple CDPs (R1).

• R6 : All CDPs must maintain the Minimal Collateral Ratio at all times.
We define the collateral ratio (cr) of a CDP as:

cr =
pc ∗ ac
pm ∗ am

where:

– pc is the price of collateral asset.

– pm is the price of the minted asset.

– am is the total minted amount of this CDP.

– ac is the locked collateral amount of this CDP.

• R7 : All CDPs must maintain a positive minted amount at all times.

• R8 : An iAsset can only be minted/burned from the CDPs associated
with that iAsset.

• R9 : The prices of collateral (ADA) and minted iAsset will be queried
from a trusted Oracle.

• R10 : A CDP can only be liquidated if the Stability Pool contains enough
amount of iAsset to cover all the debt generated by the position.

12

2.2 Stability Pool

2.2.1 User Requirements

• R1 : Users can deposit their iAssets to the Stability Pool.

• R2 : Users can withdraw their iAssets from the Stability Pool.

• R3 : Users can withdraw their rewards (collateral ADA transferred from
liquidated CDPs) from the Stability Pool.

2.2.2 Protocol Requirements

• R4 : Stability Pool asset must be in iAsset white list.

2.3 Staking

2.3.1 User Requirements

• R1 : Users can stake INDY to gain voting ability.

• R2 : Users can withdraw their staked INDY tokens.

2.3.2 Protocol Requirements

• R3 : User can not withdraw their locked INDY tokens (refer to Gover-
nance - R2).

2.4 Governance

2.4.1 User Requirements

• R1 : Users can create a proposal by depositing Proposal Deposit INDY
tokens. There are two kinds of proposals that users can create:

– Change theGovernance parameters (Proposal Deposit, Quorum, Thresh-
old, Voting Period, Effective Delay, Expiration Period)

– Add a new iAsset to the iAsset Whitelist.

• R2 : Users can vote for a proposal during its Voting Period. To vote for
a proposal, users need to specify the vote option (yes, no, or abstain)
and vote amounts. The vote amounts cannot exceed their staked INDY
amount. A user can only vote for a proposal once, and during the Voting
Period, their staked INDY used for voting will be locked.

• R3 : Users can end a proposal after its Voting Period to finalize its out-
come. The outcome of a proposal can be either Passed or Failed. If the
proposal is Failed, the proposal must be removed.

• R4 : Users can execute a Passed proposal after its Effective Delay and
before its Expiration Period to apply the change to the system.

13

2.4.2 Protocol Requirements

• R5 : Determining the outcome of a proposal after its Voting Period (cor-
respond to end action in R3)A proposal is passed if it satisfied both con-
ditions below:

– total votes
total INDY staked ≥ quorum

– total yes votes
total votes ≥ threshold

Otherwise, the proposal is failed.

• R6 : Determining where the Proposal Deposit goes (correspond to end
action in R3).When we end a proposal after its voting period, if the pro-
posal satisfied the condition R5-a, we will return the Proposal Deposit to
the creator. Otherwise, we transfer the Proposal Deposit to the Treasury
Fund.

• R7 : Changing protocol parameters

– If Voting Period or Proposal Deposit is changed, it will not
affect the ongoing proposals.

When creating a proposal, the end slot of the proposal is calculated
from the current slot and the voting period of the protocol.

– If Quorum or Threshold is changed, it will affect proposals
in Voting Period, won’t be applied to passed/failed propos-
als.

When ending a proposal, check if and quorum, the threshold is passed
(and some other conditions) then set proposal status to Passed or
Failed.

– If Effective Delay or Expiration Period is changed, it will
be applied to all ongoing proposals.

When executing a proposal, check if the proposal’s status is Passed
and effective delay and expiration period are passed, then kill the
proposal & execute its action.

2.5 Vesting

Users (Team members) can withdraw 8.75 millions INDY tokens corresponding
to the Percent-based Distribution Schedule below:

Genesis Y1 Y2 Y3 Y4 Total
Team Distribution 7.00% 7.00% 6.00% 5.00% 0.00% 25%

14

2.6 Liquidity Pool

2.6.1 User Requirements

• R1 : Users can earn INDY tokens by staking INDY/iAsset LP Tokens in
the LP Tokens Whitelist of the protocol in the Liquidity Pool contract.

• R2 : Users can add a new kind of INDY/iAsset LP Token to the LP
Tokens Whitelist via Governance.

• R3 : INDY/iAsset LPTokens are earned by adding liquidity to the ap-
propriate INDY/iAsset-[Other tokens] pools. Each pool has a unique LP
Token associated with it.

• R4 : Reward distribution schedule for liquidity pool as below:

Genesis Y1 Y2 Y3 Y4 Total
iAsset LP 0.00% 15.00% 12.00% 8.00% 5.00% 40%

Note: Percent on total supply 35M INDY.

2.6.2 Protocol Requirements

Reward Distribution Mechanism

• R5 : During each period mentioned above, INDY tokens are distributed
uniformly throughout every second.

• R6 : Let #indy be the amount of INDY tokens distributed in the second
t. The amount of INDY tokens user x gained in the second t is:

#indy × total weighted LPTokensx
total weighted LPTokens

where:

– total weighted LPTokensx is the sum of weights all LP Tokens staked
by user x.

– total weighted LPTokens is the sum of weights all LP Tokens staked
in the Liquidity Pool contract.

• R7 : The weight of a kind of LP Token is determined as follow:

– INDY-[Other tokens] LP Token’s weight = 300.

– iAsset-[Other tokens] LP Token’s weight = 100 if iAsset is added
into iAsset Whitelist in the first year.

– iAsset-[Other tokens] LP Token’s weight = 30 if iAsset is added into
iAsset Whitelist after the first year.

• R8 : Each time a user stake/un-stake some LP Tokens, they will receive
the reward unlocked from the last time they stake/un-stake some LP To-
kens.

15

3 Smart Contract Design

We choose the Cardano Blockchain for its research-first approach. We’re not
going to bet massive markets on an under-researched blockchain that proves
to be insecure or not scalable in the long run. Cardano also provides a great
functional programming toolset that improves software correctness and efficient
transactions that are inexpensive and fast to execute.

3.1 Vesting

3.1.1 Native Tokens

Name Description Minting Policy
INDY INDY Token has many utilities

in our protocol. For this version,
user can use INDY Token to open
a proposal and earn the voting
powers.

Minted before launch with
total supply 35 million.

3.1.2 OnChain

Parameters

• indyToken :: Value.AssetClass. AssetClass of INDY Token.

Outputs:

16

Type Description Datum Values
TeamVesting Each output corre-

sponding to one re-
ward period.

• validTime:
the time after
that team
members can
withdraw
reward at
this output.

• members:
map of team
members’
public keys
and their
reward.

INDY (based on
each output)

Validation Rule:
Consume TeamVesting (validTime,members) output withWithdrawINDY(pkh,

amount) redeemer:

1. The transaction must be signed by pkh.

2. The time range of transaction must be after validTime.

3. The amount is less than or equal to user’s reward.

4. The transaction produces an TeamVesting (validTime’, members’) output
with the following condition:

(a) validTime’ = validTime

(b) member ’[pkh] = member [pkh] - amount

(c) Amount INDYs locked at the output must be updated properly.

17

3.2 Staking

3.2.1 Native Tokens

Name Description Minting Policy
StakingManagerNFT - The NFT identifies the authen-

tic StakingManager output.
- The NFT must be stored at
StakingManager output.
- Validator scripts ensure that
this NFT always stays at the
StakingManager output.

The protocol mints
exactly 1 token, be-
fore launch.

StakingToken Identify the authentic Staking-
Position output.

The transaction
must consume
StakingMan-
agerNFT.

3.2.2 OnChain

Parameters

• stakingManagerNFT :: Value.AssetClass. NFT of StakingManager.

• stakingToken :: Value.AssetClass. Token for identifying authentic
Staking Position output.

• proposalToken :: Value.AssetClass. Token for identifying authentic
Proposal output.

• indyToken :: Value.AssetClass. INDY token.

18

Outputs:
Type Description Datum Values
StakingManager - Only one out-

put of this type
is stored in the
script.
- To create a
StakingPosition
output, the user
must consume
this output in the
transaction.

totalStake: The
total amount of
staked INDY

stakedPkh: list
of public key
hash staked
some INDY

StakingManagerNFT

Validation Rule:

1. Consume the StakingManager (totalStake, stakedPkh) output with Creat-
eStakingPosition owner redeemer:

(a) The transaction must be signed by owner.

(b) owner /∈ stakedPkh

(c) Tx mint/burn amount = {1 StakingToken}
(d) The transaction must produce one StakingPosition (owner, lockedAmount)

output to the StakingScript. Let #indy be the amount of INDY
stored in this output, we have the following conditions:

i. lockedAmount = {}
ii. Value = {#indy INDY, 1 StakingToken}

(e) The transaction must produce one StakingManager (totalStake’, stakePkh’)
output to the StakingScript:

i. totalStake′ = totalStake+#indy

ii. stakePkh′ = stakePkh ∪ {owner}
iii. Value = {1 StakingManagerNFT}

2. Consume StakingManager output with UpdateTotalStake redeemer:

(a) The transaction must consume one StakingPosition output.

3. Consume StakingManager output with View redeemer:

(a) The transaction must produce the exact same StakingManager out-
put to StakingScript.

(b) Cannot mint any StakingToken.

4. Consume StakingPosition (owner, lockedAmount) output with Adjust-
StakedAmount amt redeemer:

(a) The transaction must consume exactly one StakingPosition output.

19

(b) The transaction must be signed by owner.

(c) Tx mint/burn amount = {}
(d) Let indy be the amount of INDY tokens stored at this output. Let lockedIndy be

the amount of INDY tokens locked because of voting. We have: indy
- amt ≥ lockedIndy

(e) The transaction must consume StakingManager (totalStake, stakedPkh) out-
put and produce StakingManager (totalStake’, stakedPkh’) output to
the StakingScript:

i. totalStake′ = totalStake + amt

ii. stakedPkh′ = stakedPkh

iii. Value = {1 StakingManagerNFT}
(f) Then transaction must produce StakingPosition (owner ’, lockedAmount ’) out-

put to the StakingScript:

i. owner′ = owner

ii. lockedAmount′ = lockedAmount

iii. Value = {(indy + amt) INDY, 1 StakingToken}

5. Consume exactly 1 StakingPosition (owner, lockedAmount) output with Un-
stake redeemer:

(a) The transaction must be signed by owner.

(b) lockedAmount = {}
(c) Tx mint/burn amount = {-1 StakingToken}
(d) The transaction must consume StakingManager (totalStake, stakedPkh) out-

put and return the correct one (totalStake’, stakedPkh’) to the Stak-
ingScript:

i. totalStake′ = totalStake − indy, where indy is the amount of
INDY tokens stored at the StakingPosition output.

ii. stakePkh′ = stakePkh \ owner
iii. Value = {1 StakingManagerNFT}

6. Consume exactly 1 StakingPosition (owner, lockedAmount) output with Lock re-
deemer:

(a) The transaction must not consume StakingManager.

(b) The transaction must be signed by owner.

(c) The transaction must consume a Proposal Output in its Voting Pe-
riod.

7. Consume exactly 1 StakingPosition (owner, lockedAmount) output with
Unlock redeemer:

(a) The transaction must not consume StakingManager.

20

(b) The transaction must be signed by owner.

(c) Must produce 1 StakingPosition (owner ’, lockedAmount ’) output to
the StakingScript:

i. owner′ = owner

ii. lockedAmount′ = lockedAmount\x ∈ lockedAmount | x.endT ime < txV alidRange

3.3 Governance

3.3.1 Native Tokens

Name Description Minting Policy
GovNFT - Identify authentic Governance

output.
- Governance Script ensures that
this NFT always stays at the
Governance output.

The protocol mints
exactly 1 token, be-
fore launch.

TreasuryPoolNFT - Identify the authentic Trea-
suryPool output.
- Governance Script ensures that
this NFT always stays at the
TreasuryPool output.

The protocol mints
exactly 1 token, be-
fore launch.

ProposalToken - Identify the authentic proposal.
- Validator scripts ensure that
this token always stays at Pro-
posal output.

The transaction
must consume
GovNFT.

3.3.2 OnChain

Parameters

21

• governanceNFT :: Value.AssetClass. NFT of Governance.

• treasuryPoolNFT :: Value.AssetClass. NFT of Treasury Pool.

• proposalAuthToken :: Value.AssetClass. Token identifying authen-
tic proposals.

• iAssetToken :: Value.AssetClass. Token identifying authentic iAs-
set outputs.

• stabilityPoolToken :: Value.AssetClass. Token identifying authen-
tic Stability Pool outputs.

• lpOutputToken :: Value.AssetClass. Token for identifying authentic
LPToken outputs.

• indyAsset :: Value.AssetClass. INDY Token.

• stakingParams :: StakingParams. The parameters to interact with
Staking script.

• cdpValHash :: Ledger.ValidatorHash. Hash of the CDP script. We
need to place iAsset output there.

• sPoolValHash :: Ledger.ValidatorHash. Hash of the Staking script.
We need to place the staking manager and staking position outputs there.

• liquidityValHash :: Ledger.ValidatorHash. Hash of Liquidity Pool
script. We need to place the LPToken output there.

Outputs:

22

Type Description Datum Values
Governance - Only one out-

put of this type
is stored in the
script.
- To create a Pro-
posal output, the
user must con-
sume this output
in the transac-
tion.
- To store the
protocol parame-
ters.

currentProposal : The num-
ber of opened proposals.

iAssetList : iAsset whitelist.

propotolParams: The
params of the protocol.

GovNFT: 1

Proposal Each proposal
output rep-
resenting a
proposal.

psId : Index of the proposal.

psOwner : The public key
hash that creates the pro-
posal.

psContent : The content of
the proposal. More details
are in

Table 1

.

psStatus: The status of a
proposal. More details are in

Table 1

.

psEndTime: The slot that
proposal’s voting period
ends, calculated from vot-
ingPeriod when creating.

psDescription: Explain why
this proposal is necessary.

ProposalToken:
1
INDY: Pro-
posal Deposit

Treasury
Pool

Store Proposal
Deposit INDY
tokens that are
not returned to
the proposals’
creators.

TreasuryPool-
NFT
INDY: Store
Proposal De-
posit INDY.

23

Table 1: Proposal Detail
Proposal’s features Types
psContent

• ProposeAsset: Whitelist a new iAsset

– iaName: Name of the iAsset

– iaMinRatio: Minimum Collateral
Ratio

• ProposeLPToken: Whitelist a new LP-
Token

– lpAsset : Asset class of the LPTo-
ken

– lpWeight : Reflect with iAsset, 300
if token is INDY, 100 if iAsset
minted for the first year, 30 oth-
erwise.

• ModifyProtocolParam: protocolParams

psStatus

• InProgress

– nYes: yes votes

– nNo: no votes

– nAbstain: abstain votes

• Passed

– passedTime: The slot that the pro-
posal passed

24

Validation Rule:

1. Consume Governance (currentProposal, iAssetList, protocolParams, lpTo-
kenList) output with CreateProposal sTime redeemer:

(a) The transaction must produce a Governance output to the Gover-
nance script with:

i. Datum = Governance (currentProposal + 1, iAssetList, proto-
colParams, lpTokenList).

ii. Value = {1 GovNFT}
(b) The transaction must produce a new Proposal (id, owner, content,

status, psEndTime, description) output to the Governance script:

i. The transaction must be signed by owner.

ii. id = currentProposal + 1

iii. status = InProgress 0 0 0.

iv. psEndT ime = sT ime+ votingPeriod

v. If content is ProposeAsset , the proposed iAsset must not exist.

vi. If content is ProposeLPToken, the proposed LPToken must not
exist and lpWeight must correct.

vii. Value = {Proposal Deposit INDY, 1 ProposalToken}
(c) The time range of transaction must be included in (sTime - biasTime,

sTime + biasTime).

(d) Tx mint/burn amount = {1 ProposalToken}

2. Consume Proposal (id, owner, content, status, endSlot, description) out-
put with Vote option amount redeemer:

(a) The proposal must actually be in its Voting Period:

i. The status must be InProgress.

ii. txV alidRange ≤ endSlot

(b) User cannot lock negative amount to vote.

(c) The total locked amount must be less than or equal to the staked
amount.

(d) The transaction must produce a Proposal(id’, owner’, content’, sta-
tus’, endSlot’, description’) output to the GovernanceScript:

i. id’, owner’, content’, endSlot’, description’ must remain the
same.

ii. The status’ must be updated properly.

iii. The value of the Proposal Output must stay the same.

(e) The transaction must consume exactly one StakingPosition (owner,
lockedAmount) output:

25

i. id /∈ keys(lockedAmount) (owner didn’t vote for this proposal be-
fore)

(f) The transaction must produce exactly one StakingPosition (owner’,
lockedAmount’) output to the StakingScript:

i. Value must stay the same

ii. owners′ = owner

iii. lockedAmount′ = lockedAmount ∪ (id, amount)

3. Consume Proposal (id, owner, content, status, endSlot, description) out-
put with EndProposal pTime redeemer:

(a) The transaction must consume the StakingManager (totalStake,) out-
put and return the exact same one.

(b) The transaction must consume Governance (protocolParameters, . . .)
output and return the exact same one.

(c) The time range of transaction must be included in (pTime - biasTime,
pTime + biasTime).

(d) The proposal must not be in its Voting Period and still InProgress:

i. The status must be InProgress.

ii. txV alidRange > endSlot

(e) Let participantRatio = nY es+nNo+nAbstain
total stake

i. participantRatio ≥ quorum: All the INDY locked in this pro-
posal must be sent to owner.

ii. participantRatio < quorum: All the INDY locked in this pro-
posal must be sent to the TreasuryPool.

(f) Let yesRatio = nY es
nY es+nNo+nAbstain

i. yesRatio ≥ threshold & participantRatio ≥ quorum:

A. The transaction must produce exactly one Proposal output
(id’, owner’, content’, status’, endSlot’, description’) to the
GovScript:

B. id = id′, owner = owner′, content = content′, endSlot =
endSlot′, description = description′.

C. status = Passed pTime.

ii. Otherwise:

A. Tx mint/burn amount = {-1 ProposalToken}

4. Consume Proposal (id, owner, content, status, psEndTime, description)
output with Execute redeemer:

(a) The transaction must consume Governance (protocolParameters, . . .)
output.

(b) We can indeed execute this proposal:

26

i. The status must be Passed.

ii. txV alidRange ≥ passedT ime+ effectivedelay

iii. txV alidRange < psEndT ime+ expirationperiod

(c) We execute the proposal properly, produce the correct Governance out-
put, and mint the correct amounts of all relevant Cardano native
tokens:

i. PropsalAsset iAsset :

A. The transaction must produce exactly one Governance (cur-
rentProposal’, iAssetList’, protocolParams’) output to the
GovernanceScript:

• currentProposal′ = currentProposal, protocolParams′ =
protocolParams

• iAssetList′ = iAssetList ∪ iAsset

• Value = {1 GovNFT}
B. A StabilityPool (iAsset, {}, {}) output must be produced to

the StabilityPoolScript.

C. An iAsset (iAsset) output must be produced to the CDP-
Script.

D. Token minted/burned = {1 ProposalToken, 1 StabilityPoolTo-
ken, 1 iAssetToken}

ii. ProposeLPToken lpToken:

A. The transaction must change the Governance output prop-
erly (add lpToken to whitelist)

B. A LPToken output must be produced to the Liquidity script.

C. Token minted/burned = {1 ProposalToken, 1 LPAuthToken}
iii. ChangeProtocolParameter protocolParams:

A. The transaction must produce exactly one Governance (cur-
rentProposal’, iAssetList’, protocolParams’) output to the
GovernanceScript:

• currentProposal′ = currentProposal, iAssetList′ = iAssetList

• protocolParams′ = protocolParams

• Value = {1 GovNFT}
B. Token minted/burned = {-1 ProposalToken}

5. Consume Governance output with ConsumeWithProposal redeemer:

(a) The transaction must consume exactly one Proposal output (id, owner,
content, status, psEndTime, description):

i. We can’t vote for this proposal:

A. status != InProgress

B. or txV alidRange > psEndT ime

6. Consume TreasuryPool output with AddFee redeemer:

27

(a) Can not withdraw from pool.

NOTE: When we consume the Proposal output with EndProposal or Exe-
cute redeemer, we also validate the outcome of the Governance output. How-
ever, we don’t do that when consuming with Vote redeemer. a-i is a way to work
around it. The design will be much cleaner, more intuitive, and more coherent
when Plutus allows us to view the Redeemers all inputs in the transaction.

3.4 Oracle

3.4.1 Native Tokens

Name Description Minting Policy
OracleNFT - Identify the authentic Oracle

output.
- Must be stored at Oracle out-
put.
- Validator scripts ensure that
this NFT always stays at the Or-
acle output.

The protocol mints ex-
actly 1 token, before
launch.

3.4.2 OnChain

Parameters

• oracleNFT :: Value.AssetClass. NFT of Oracle.

• owner :: Ledger.PubKeyHash. The owner of Oracle has permission to
update prices.

• oracleFee :: OnChainDecimal. The fee must be paid to read Oracle
utxo.

28

Outputs:
Type Description Datum Values
Oracle - Only the sole owner has per-

mission to update the price.
- Users must consume this
output to get the price of the
asset.
- The user must send a small
read fee to Oracle’s owner to
consume this output.

Map of iAssets
and their prices.

OracleNFT.

Validation Rule:

1. Consume Oracle output with FeedPrice redeemer:

(a) The transaction must return Oracle output with its NFT to the Or-
acle Script.

(b) The transaction must be signed by the Oracle owner.

(c) The new Oracle datum must reflect the FeedPrice update properly.

(d) The new price must be positive.

2. Consume Oracle output with Use redeemer:

(a) The transaction must return Oracle output with its NFT to the Or-
acle Script.

(b) The Oracle datum must stay the same.

(c) The transaction must send a small read fee to Oracle’s owner.

3.5 Stability Pool

3.5.1 Native Tokens

Name Description Minting Policy
StabilityPoolToken Identify the authentic Stabil-

ityPool output.
The transaction must
spend GovNFT.

29

3.5.2 OnChain

Parameters

• stabilityPoolToken :: Value.AssetClass. StabilityPoolToken.

• assetSymbol :: Value.CurrencySymbol. iAsset currency symbol.

• cdpToken :: Value.AssetClass. Token for identifying authentic CDP
output.

Outputs:
Type Description Datum Values
StabilityPool Each Stabili-

tyPool output
holds different
flavors of iAsset.

iAsset : Type of iAsset.
Stability Providers:
Map of stability
providers and their
deposited amount.
Rewards: Map of sta-
bility providers and
their reward that is the
amount of ADA ob-
tained in the pool.

StabilityPoolToken:
1.
iAsset: Funded by
Stability Providers.
ADA: Collateral
transferred to Sta-
bilityPool from
liquidated CDP.

Validation Rule:

1. Consume the StabilityPool (iAsset, stabilityProviders, rewards) output
with LiquidateCDP redeemer:

(a) The transaction must consume exactly one StabilityPool output.

(b) The transaction must consume exactly one CDP (id, owner, iAsset’,
mintedAmount) output:

i. iAsset = iAsset′

ii. StabilityPool has enough funds to cover the subtraction of the
debt and mintedAmount.

30

(c) The transaction must produce exactly one StabilityPool (iAsset’, sta-
bilityProviders’, rewards’) to the StabilityPoolScript:

i. iAsset = iAsset′

ii. The reward, stabilityProviders’ must be updated properly.

iii. Value = {totalCollateralReward ADA, poolFund iAsset, 1 Stabil-
ityPoolToken}

(d) Tx Mint/burn amount = {mintedAmount iAsset, (-1) CDPToken}

2. Consume the StabilityPool (iAsset, stability providers, rewards) output
with AdjustSP redeemer:

(a) The transaction must consume exactly one StabilityPool output with
StabilityPoolToken.

(b) Users cannot have a negative deposited amount after updating.

(c) Must produce one StabilityPool (iAsset’, stabilityProviders’, rewards’)
output:

i. iAsset′ = iAsset

ii. stabilityProviders′ = stabilityProviders with updates

iii. rewards′ = rewards

iv. Value = {oldTotalCollateralReward ADA, newPoolFund iAsset,
1 StabilityPoolToken}

(d) Tx Mint/burn amount = {}

3. Consume the StabilityPool (iAsset, stability providers, rewards) output
with WithdrawSPReward redeemer:

(a) The transaction must consume exactly one StabilityPool output and
return one output with StabilityPoolToken.

(b) The transaction must withdraw a positive amount.

(c) Users can not have a negative reward amount after updating.

(d) Must produce one StabilityPool (iAsset’, stability providers’, rewards’)
output:

i. iAsset′ = iAsset

ii. stabilityproviders′ = stabilityproviders with updates

iii. rewards′ = rewards

iv. Value = {newTotalCollateralReward ADA, oldPoolFund iAsset,
1 StabilityPoolToken}

(e) Tx Mint/burn amount = {}

31

3.6 Collateralized Debt Position (CDP)

3.6.1 Native Tokens

Name Description Minting Policy
CDPManagerNFT - The NFT identifies the authen-

tic CDPManager output.
- Must be stored at CDPMan-
ager output.
- Validator scripts ensure that
this NFT always stays at the
CDPManager output.

The protocol mints
exactly 1 token, be-
fore launch.

CDPToken Identify the authentic CDP out-
put.

The transaction
must spend CDP-
ManagerNFT or
consume a CDPTo-
ken.

iAssetToken - Identify the authentic iAsset
output.
- Validator scripts ensure that
this token always stays at iAsset
output.

The transaction
must consume
GovNFT.

iAssets (iTSLA,
iXAU,. . .)

Synthetic version of TSLA,
XAU,. . .

The transaction
must either con-
sume or spend a
CDPToken.

3.6.2 OnChain

Parameters

• cdpManagerNFT :: Value.AssetClass. NFT of CDPManager.

• cdpAuthToken :: Value.AssetClass. Token for identifying authentic
CDP output.

32

• cdpAssetSymbol :: Value.CurrencySymbol. Currency Symbol of all
iAssets.

• iAssetToken :: Value.AssetClass. Token identifying authentic iAs-
set.

• oracleParam :: OracleParams. The parameters to interact with Ora-
cle Script.

• stabilityPoolToken :: Value.AssetClass. Token identifying authen-
tic Stability Pool.

Outputs:
Type Description Datum Values
CDPManager - Only one out-

put of this type
is stored in the
script.
- To create a
CDP output, the
user must con-
sume this output
in the transac-
tion.

currentCounter : The
number of opened
CDPs.

CDPManagerNFT:
1.

CDP - Each CDP out-
put representing
an individual po-
sition.

id : Index of CDP.
owner : The public key
hash that owns this
CDP.
iAsset : Type of iAsset
minted of this CDP.
mintedAmount :
Amount of iAsset
minted from this
position.
minRatio: The mini-
mum collateral ratio of
iAsset.

CDPToken: 1.
ADA: collateral
locked in this
position.

iAsset Each iAsset out-
put representing
an iAsset.

iaName: the name of
iAsset.
iaMinRatio: The mini-
mum collateral ratio of
iAsset.

iAssetToken: 1

Validation Rule:

1. Consume the CDPManager (currentCounter) output with CreateCDP re-
deemer:

33

(a) The transaction must produce CDPManager (currentCounter ’) to
the CDPScript:

i. currentCounter′ = currentCounter + 1

ii. Value = {1 CDPMangerNFT}
(b) The transaction must produce 1 CDP (id, owner, iAsset, mintedAmount)

output:

i. The transaction must be signed by owner.

ii. id = currentCounter + 1

iii. mintedAmount ≥ 0

iv. Collateral Ratio is above the Minimal Collateral Ratio.

(c) Tx mint/burn = {1 CDPToken, mintedAmount (cdpAssetSymbol,
iAsset)}

(d) The transaction must consume the Oracle output to get the prices.

(e) The transaction must consume the iAsset output with iaName =
iAsset.

2. Consume CDP (id, owner, iAsset, mintedAmount) output with AdjustCDP
redeemer:

(a) The transaction must be signed by owner.

(b) Must produce exactly one CDP output (id’, owner’, iAsset’, mintedAmount’)
to the CDPScript:

i. id = id′, owner = owner′, iAsset = iAsset′

ii. mintedAmount′ ≥ 0

iii. Collateral Ratio is above the Minimal Collateral Ratio.

(c) Tx mint/burn = {(mintedAmount’ - mintedAmount) (cdpAssetSym-
bol, iAsset)}

(d) The transaction must consume the Oracle output to get the prices.

3. Consume CDP (id, owner, iAsset, mintedAmount) output with CloseCDP
redeemer:

(a) The transaction must consume exactly one CDP output.

(b) The transaction must be signed by owner.

(c) Tx mint/burn = { -1 CDPToken, -mintedAmount (cdpAssetSymbol,
iAsset)}

4. Consume the CDP (id, owner, iAsset, mintedAmount) output with Liq-
uidateCDP redeemer:

(a) The transaction must consume exactly one CDP output.

(b) The transaction must consume exactly one StabilityPool output.

34

(c) Tx mint/burn = {-1 CDPToken}
(d) The collateral ratio of CDP must be under Minimal Collateral Ratio.

(e) The transaction must consume the Oracle output to get the prices.

5. Consume iAsset output with View redeeemer:

(a) The transaction must return iAsset output with its iAssetToken.

(b) The iAsset datum must stay the same.

3.7 Liquidity Pool

3.7.1 Native Tokens

Name Description Minting Policy
LiquidityPoolNFT Identify the authentic Liquidity-

Pool output.
The protocol mints
exactly 1 token, be-
fore launch.

LiquidityPosition-
Token

Identify the authentic Liquidity-
Position output.

The transaction
must consume
LiquidityPoolNFT.

LPTokens User must add liquidity to
iAsset-StableCoin/ INDY-
StableCoin pool to receive.

Produced by DEX

LPAuthToken Identify the authentic LPToken
output

Then transaction
must consume
GovNFT.

3.7.2 OnChain

Parameters

• liquidityPoolNFT :: Value.AssetClass. NFT for identifying authen-
tic Liquidity Pool output.

35

• liquidityPositionToken :: Value.AssetClass. Token for identify-
ing authentic Liquidity Position output.

• lpAuthToken :: Value.AssetClass. Token for identifying authentic
LPToken output.

• indyToken :: Value.AssetClass. INDY token.

• vestingPeriods :: [(Ledger.POSIXTime, Ledger.POSIXTime), OnChainDecimal)].
Map of the vesting periods (start, end) to the amount of INDY tokens re-
leased in that period. INDY tokens will released uniformly throughout
the period.

Outputs:
Type Description Datum Values
LiquidityPool Only one output

locked all INDY
reward for liquid-
ity pool

totalLPTokenStake:
weighted sum of all
staked LP tokens.
avgINDYPoolSnapshot :
more explanation be-
low.
lastUpdateSnapshot :
the latest time pool
was updated.
listStakers: list of pub-
lic key hash staked LP-
Tokens.

INDY: INDY
rewards for pro-
viding iAsset and
INDY liquidity
for DEX.
LiquidityPoolNFT

Liquidity-
Position

- Each output
corresponding to
a staking position
of a user.
- This output is
created when the
user stake LPTo-
ken for the first
time.

lpOwner : owner of this
Liquidity Position.
avgINDYPosition-
Snapshot : avgINDY-
PoolSnapshot at the
last time the owner
interacts with his/her
position.
totalPositionStaked :
weighted sum of all
LP Tokens staked by
lpOwner.

LiquidityPosition-
Token: 1.
LPTokens: staked
amount in this
output.

LPToken Each LPToken
output represent-
ing an LPToken

lpTokenAsset : Asset-
Class of LPToken
weight : LPToken’s
weight.

lpTokenOutput: 1

Validation Rule:

1. Consume LiquidityPool (totalLPTokenStake, avgINDYPoolSnapshot, las-
tUpdateSnapshot, listStakers) output with CreateLP (owner, amount, cur-
rentTime) redeemer

36

(a) The transaction must be signed by owner.

(b) owner /∈ listStakers

(c) currentT ime > lastUpdateSnapshot

(d) (currentTime - biasTime, currentTime + biasTime) contains the
time range of transaction.

(e) Tx mint/burn amount = {1 LiquidityPositionToken}
(f) The transaction must consume only one LPToken (lpTokenAsset,

weight) output and return the same one.

(g) Then transaction must produce one LiquidityPool (totalLPToken-
Stake’, avgINDYPoolSnapshot’, lastUpdateSnapshot’, listStakers) out-
put.

i. Datum

• totalLPTokenStake′ = totalLPTokenStake+amount∗weight

• If totalLPTokenStake = 0:

avgINDY PoolSnapshot′ = avgINDY PoolSnapshot

• Else: avgINDY PoolSnapshot′ =

avgINDY PoolSnapshot+
RewardlastUpdateSnapshot→currentT ime

totalLPTokenStake

• lastUpdateSnapshot′ = currentT ime

• listStakers′ = listStakers ∪ owner

ii. Value = LiquidityPoolNFT and:

• If totalLPTokenStake = 0:

oldINDY Amount−RewardlastUpdateSnapshot→currentT imeINDY.

• Else : oldINDYAmount INDY

(h) The transaction must produce one LiquidityPosition (owner, avgINDY-
PositionSnapshot, totalPositionStaked) output.

i. avgINDY PositionSnapshot = avgINDY PoolSnapshot′

ii. totalPositionStaked = amount ∗ weight
iii. Value = {1 LiquidityPositionToken, amount lpTokenAsset}

2. Consume LiquidityPool (totalLPTokenStake, avgINDYPoolSnapShot, las-
tUpdateSnapshot, listStakers) output with AdjustLP (currentTime, amount)
redeemer:

(a) The transaction must consume one LiquidityPosition(, , totalPosi-
tionStaked) with LiquidityPositionToken.

37

(b) amount must be correct.

(c) The transaction must consume the LPToken (lpTokenAsset, weight)
output and return the same one.

(d) (currentTime - biasTime, currentTime + biasTime) contains tx-
ValidRange.

(e) The transaction must return the correct Liquidity Pool (totalLPTo-
kenStake’, avgINDYPoolSnapShot’, lastUpdateSnapshot’, vestingPe-
riods’, listStakers’) output:

i. Datum

• totalLPTokenStake′ = totalLPTokenStake+amount∗weight
• If totalLPTokenStake = 0 : avgINDY PoolSnapshot′ =
avgINDY PoolSnapshot

• Else :avgINDY PoolSnapshot′ =

avgINDY PoolSnapshot+
RewardlastUpdateSnapshot→currentT ime

totalLPTokenStake

• lastUpdateSnapshot′ = currentT ime

• listStakers = listStakers′

ii. Value

• 1 LiquidityPoolNFT

• old amount of INDY - (avgINDY PoolSnapShot−
avgINDY PositionSnapshot) ∗ totalPositionStaked

3. Consume LiquidityPosition (lpOwner, avgINDYPositionSnapshot, total-
PositionStaked) output with AdjustLP(currentTime, amount) redeemer:

(a) The transaction must consume one LiquidityPool output with Liq-
uidityPoolNFT.

(b) The transaction must consume one LPToken (lpTokenAsset, weight)
output and return the same one.

(c) The transaction must produce a LiquidityPool(, avgINDYPoolSnap-
Shot’,) output.

(d) The transaction cannot mint/burn any tokens.

(e) The transaction must be signed by lpOwner.

(f) The transaction must return the correct LiquidityPosition (lpOwner’,
avgINDYPositionSnapshot’, totalPositionStaked’) output:

i. Datum:

• avgINDY PositionSnapshot′ = avgINDY PoolSnapShot′.

• lpOwner′ = lpOwner

• totalPositionStaked′ = totalPositionStaked+amount∗weight
ii. Value:

38

• 1 LiquidityPositionToken

• The sum of old staked amount and amount lpTokenAsset .

4. Consume LPToken (lpToken, weight) output with View redeemer:

(a) The transaction must return the same LPToken output with LPAu-
thToken.

4 OffChain Endpoints

4.1 Vesting

4.1.1 Withdraw

Team member can withdraw their available reward through Withdraw transac-
tion.

4.2 Staking

4.2.1 Create Stake Position

CreateStakePosition transaction allows users to create a stake position and stake
their INDY.

39

4.2.2 Stake

Stake transaction allows users to deposit INDY to their Staking position.

4.2.3 Withdraw from Stake Position

WithdrawStake transaction allows users to withdraw INDY from their Staking
position.

4.2.4 Unstake

Unstake transaction allows users to close their StakingPosition and withdraw
all staked INDY.

40

4.2.5 Unlock

Unlock transaction allows users to unlock all INDY that was locked in the
expired proposals

4.3 Governance

4.3.1 Create Proposal

Create Proposal transaction allows the user to create a Proposal and lock the
amount of INDY as a fee.

4.3.2 Vote

Vote transaction allows the user to vote for a proposal with a vote option and
vote fee.

41

4.3.3 End Proposal

End Proposal flow allows the user to end the proposal and pay the creation fee
to the owner or Treasury Pool.

Figure 1: End a failed proposal

Figure 2: End a success proposal

42

4.3.4 Execute

Execute Asset allows the user to execute a passed proposal. There are 2 types
of proposals:

• UpdateProtocolParams : To update protocol params in Gov output, out-
put has only Gov.

• ProposeAsset : To execute a new iAsset, the output includes Gov, iAsset,
and StabilityPool.

Figure 3: Execute an expired proposal

Figure 4: Execute a proposal to modify protocol params

43

Figure 5: Execute a proposal to propose an asset

Figure 6: Execute a proposal to propose an LPToken

4.4 Oracle

4.4.1 Feed Price

FeedPrice transaction flow allow oracles’ owner to update the price of an iAsset

44

4.5 CDP

4.5.1 Open CDP

Open position allows users to create a CDP with Ada as a collateral asset and
mint iAsset (iTSLA, iXAU,. . .).

4.5.2 Update CDP (deposit, withdraw, mint, burn, close, liquidate)

Deposit transaction allows users to deposit ADA to their CDP.

Withdraw transaction allow users to withdraw ADA from their CDPs

45

Mint transaction allows users to mint new iAsset.

Burn transaction allows users to burn their iAsset (iTSLA, iGOLD,. . .).

46

Close transaction allows users to close their CDP then retrieve their ADA
collateral.

Liquidate transaction allows users to liquidate a CDP: burn iAsset in the
stability pool and pay ADA reward from the collateral of CDP to stability pool
providers.

4.6 Stability Pool

4.6.1 Deposit

Deposit transaction allows users to deposit their iAsset to a Stability Pool.

47

4.6.2 Withdraw

Withdraw transaction flow allows users to withdraw their deposited iAsset from
Stability Pool.

4.6.3 Withdraw Reward

WithdrawReward transaction allows users to withdraw their ADA reward from
Stability Pool.

4.7 Liquidity Pool

4.7.1 Open a Liquidity Position

The transaction allows the user to create a liquidity position in the liquidity pool
and maybe receive INDY reward from the pool if he/she is the first provider.

48

4.7.2 Adjust a Liquidity Position

The transaction allow the users to update their liquidity positions and maybe
receive INDY reward from the pool.

49

5 Glossary

6 Experiments

Smart contract implementation and tests can be found here: https://github.
com/IndigoProtocol/smart-contracts.

7 Related Work

This work is highly influenced by Mirror Finance (https://mirror.finance)
& Liquity (https://www.liquity.org/)

8 Conclusions

The activity of trading cryptocurrencies and other real-world assets is steadily
spanning beyond the ’professional trader’ to the everyday person, globally. The
creation of centralized applications like Robinhood & eToro, along with social
media figureheads, have driven this exponential rise in interest and investment.
Indigo Protocol will satisfy this rapidly growing demand with decentralized syn-
thetic asset exposure for the common person. Indigo protocol will continue to
grow significantly in the months and years ahead. Exploring and creating indus-
try partnerships will allow new ideas and concepts to be deployed as blockchain
technology and DeFi inevitably grows and evolves as a whole, while enhance-
ments to the protocol will be driven by the user community and governance

50

https://github.com/IndigoProtocol/smart-contracts
https://github.com/IndigoProtocol/smart-contracts
https://mirror.finance
https://www.liquity.org/

proposal process. This will ensure that the user community maintains the pro-
tocol as the heirs to the platform in true DAO fashion.

References

[1] M. Chakravarty, James Chapman, K. Mackenzie, Orestis Melkonian, M. P.
Jones, and P. Wadler. The extended utxo model. In Financial Cryptography
Workshops, 2020.

51

	Introduction
	User Story
	Synthetic Assets
	Market & Users
	How It Works
	Going Short
	Going Long
	Stability Pool Redemption

	Protocol Overview
	Minting & Stability Functionality
	Providing Liquidity to DEXs
	Staking INDY

	Tokenomics
	INDY Token Distribution

	INDY Token Staking
	iAsset Tokenomics
	Minting Policy

	Governance
	Protocol Parameters

	Risk Management

	Protocol Specifications
	CDP
	User Requirements
	Protocol Requirements

	Stability Pool
	User Requirements
	Protocol Requirements

	Staking
	User Requirements
	Protocol Requirements

	Governance
	User Requirements
	Protocol Requirements

	Vesting
	Liquidity Pool
	User Requirements
	Protocol Requirements

	Smart Contract Design
	Vesting
	Native Tokens
	OnChain

	Staking
	Native Tokens
	OnChain

	Governance
	Native Tokens
	OnChain

	Oracle
	Native Tokens
	OnChain

	Stability Pool
	Native Tokens
	OnChain

	Collateralized Debt Position (CDP)
	Native Tokens
	OnChain

	Liquidity Pool
	Native Tokens
	OnChain

	OffChain Endpoints
	Vesting
	Withdraw

	Staking
	Create Stake Position
	Stake
	Withdraw from Stake Position
	Unstake
	Unlock

	Governance
	Create Proposal
	Vote
	End Proposal
	Execute

	Oracle
	Feed Price

	CDP
	Open CDP
	Update CDP (deposit, withdraw, mint, burn, close, liquidate)

	Stability Pool
	Deposit
	Withdraw
	Withdraw Reward

	Liquidity Pool
	Open a Liquidity Position
	Adjust a Liquidity Position

	Glossary
	Experiments
	Related Work
	Conclusions

